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Abstract

In this paper, we present a new method for solving the general linear multidimensional unsteady inverse heat conduction problem. The
direct numerical method is based on the Boundary Element Method formulation. Taking into account future time steps, the ill-conditioned
linear system is solved using a procedure based on the Singular Value Decomposition technique which handles both spatial and tempora
instabilities. The regularization method is essentially a spectral truncation method with a single hyperparameter. The optimal value of this
hyperparameter can be chosepriori from the knowledge of the data uncertainty.

In the second part of this paper, an experiment is described which illustrates an application of the method on a two-dimensional problem.
The physical problem consists in identifying the heat flux on a plate exposed to a moving front of hot fluid from temperature measurements
collected on the opposite side of the plate. Numerical results obtained are discussed in comparison to direct heat flux measurements. Th
purpose of this experiment was to cross-check two types of heat flux sensors in real unsteady two-dimensional situations. It is also shown
that the method can be applied to real 3D problems.

0 2003 Elsevier SAS. All rights reserved.
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1. Introduction method have been used [2]. These methods acknowledge
that temperatures at a given time and location depend only

) ) very slightly on neighboring temperatures values at the
The Inverse Heat Conduction Problem (IHCP), like the o, 6 fime: whereas temperature values at earlier times may

vast majority of inverse problems, is known to be ill-  yoneng more significantly on these former temperatures.
posed: besides the possible non-uniqueness of the SOIUt'Onrherefore, it is important not to solve only in sequential

of discrgtized problem, the I’(?Z‘SU.lt.S are very sensitive t9 input manner at time for the unknown values of the temperature,
data noise. In order to get significant results, rt_agulanzaﬂon but to solve for all the temperature values within a given time
procedures must be used when solving the linear system, o i the past to improve the conditioning of the prob-
associated to the problem. It is known that many steady o "t s often referred to these methods as the “future time
inverse prpblems are already ill-posed [7,8]._ Moreover, for steps” method, since a temperature value at tinie sig-
unstea_dy Inverse pr.oblems,_(.jue o parabolic nature of thenificantly dependent on temperatures values at tiraer.
heat diffusion equation, additional time related phenomena, /o, reversing the point of view and considering past tem-

such as damping and lagging effects increase the sensitivity o a4re values, they seem to depend on future temperature
of solution to measurement errors.

To cope with the lagging effect of the diffusion op-
erator, many methods such as the function specification

values.

As a consequence, many authors have developed mul-
tidimensional algorithms based on a two-fold regulariza-
tion procedure. For steady problems, the Tikhonov tech-

* Corresponding author. nique [12], and iterative gradient methods [1] are widely

E-mail address: herve.lemonnier@cea.fr (H. Lemonnier). used. For unsteady problems, the function specification
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Nomenclature
a spatial decay of heat flux distribution see n outwardly oriented normal vector on the
EQ-(25) ooveeeiee e a7t boundary, lengtk= 1
A boundary element discretised operator of the P number of unknown boundary values
sequential direct problem fo diffusion time scale, defined in Table 1...... S
b vector of the known part of Eq. (9) T vector of the boundary temperature values
¢ boundary function defined in Eq. (3) w singular value
C matrix, the coefficients of which are definedin Y orthogonal matrix, base of the source space
Eq. (7) v rise velocity in the Cinthia experiment . . -g1t
: : ) diffusion velocity scale, defined in
d Space _d|menS|om£ cihz3 Tablel ... a7t
e wall thickness............... .. ... L. m Vv h | matrix. b fthe
F number or time steps orthogonal matrix, base of the image space
. . . w diagonal singular value matrix
Fo Fourier number, non-dimension&h = /1o ;
, . . . X observer point
G, Green’s function defined in Eq. (5) Y source point
G matrix, the coefficients of which are defined in y vector of the unknown boundary values
Eg. @_ _ (temperature or heat flux)
H Heaviside function
H matrix the coefficients of which are definedin ~ Greek letters
Eq. (6) a heat diffusivity .. .................... frs 1
k thermal conductivity ............ wh-1.K-1 A uncertainty of the designated variable
K condition number of the designated matrix, € threshold on the singular values, truncation level
see Eq. (16) " hyperparameter of the Tikhonov regularization
q heat fluX. .....ovvvee e Wi—2 T timeinterval(tp — 1) ..o s
q }[{ector of the boundary heat flux values Subscripts, and superscripts
t M e s ) ) _ )
T temperature, non-dimensional unless otherwise * non-dimensional, “’.“e scaleds
t transpose of a matrix
stated ... ... K . LT
M observer point F final or resolution time
, SErver pol f relative to time step
M source point
N number of boundary elements Operators
Nt number of future time steps A Laplacian operator
Npi number of internal collocation points L linear heat diffusion operator, see Eq. (1)

method developed by Beck et al. [2] is often used in tandem 2. Description of the method
with one of the two previously mentioned methods. In addi-
tion it must be mentioned that Pasquetti and Le Niliot [10]

have also implemented a temporal Tikhonov regularization
method.

The novelty of our method is to use a single regularization  The advantages of the boundary element method are now
procedure for dealing with both temporal and spatial insta- ell known in the field of inverse problems in heat con-
bilities. It is based on the Singular Values Decomposition dyction [10]. Only the boundary of the domain has to be
technique. In the first part of this paper the boundary ele- discretized and internal points are explicitly excluded from
ment formulation of the problem is shortly introduced. Next, the solution procedure. An interesting side effect is the
the regularization procedure is developed and the choice ofconsiderable reduction in size of the linear system to be
the regularization parameters are discussed. Finally an illus-eventually solved. One can also note that the heat flux is the
tration of our method is presented on selected analytical testmain variable of the problem, unlike other numerical meth-
cases and real experiments. The results are compared to exads where the temperature is the only independent variable.
isting regularization methods such as the Tikhonov method The limitation to a linear diffusion problem (uniform ther-
of order 0 [12] and heat flux direct measurements. Finally, mal diffusion throughout the domain) is the price to pay
the proposed method is also shown to be directly applicablefor this, although significant departure from this limitation
to real 3D problems. is still possible such as the multiple reciprocity method de-

2.1. Direct problem: Boundary element method (BEM)
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scribed by Novak and Newes [9]. Let us now consider the with the following notations,
general multi-dimensional heat diffusion equation,

ci=cxi),  Tj,1p)=Tjy
10T v
Lor 1) St =djf

T =Tp, throughoutthe domain at time= 0 (2) H;; rr andG;;j ry are some coefficients resulting of a time

and space integration. Lagier [5] developed computationally
efficient and accurate algorithms to compute them in most
of the useful element configurations including spherical and
cylindrical symmetric systems. Writing Eq. (6) for every
selected boundary point and every internal point of interest,
and introducing matriceld andG, one obtains the so-called
sequential BEM formulation:

where/ is the linear heat diffusion operatd¥, is the tem-
perature,« is the thermal diffusivity,A is the Laplacian
operator andy is the initial temperature distribution at time

t = 0 and where the explicit expression of the Laplacian
operator depends on the specific problem of interest. In par-
ticular, when the initial temperature fieldy, is harmonic,

the knowledge of a fundamental solution of Eq. (1) with a lo-

calized and impulsive heat soureg, (a free space Green'’s £ i

function of the adjoint operator) yields an integral formula- CTr+ ) Hr Ty =) Grsay (8)
tion equivalent to Eq. (1). Integrating the productdif and f=1 f=1

G, on the domain and in time from the initial time= 0, When solving the problem at time, all the temperatures

and any given final timex, and using the second Green's  and heat fluxes are known until time_;. Finally, taking
identity and further integrating by parts in time the result, the boundary conditions into account, one can separate the

one obtains, known values of the heat flux or the temperature and the
unknown variables among the componentsTgf andqr.
c(x)T(x,1F) By grouping the unknown values in a single vecigf, the

" i following linear system oV -+ Ny equations inP unknowns
aT 9G . .
:/ /(xG,—d(a,Q)d[—/ /(XT—td(&Q)dt (3) is obtained,
an on
0 482 0 a2

AFrryr=Dbp 9)
N _ 1 M e As mentioned above, when we deal with inverse problems,
c(M) , (4) )
1/2 M'e€ds2 “future” temperatures may be used to take into account the

lagging effect of the diffusion operator. Then, to determine
yr, EQ. (9) is written not only at timer but also atNy
future time steps. So, the final linear system to be solved
consists of(N + Npi)(Ngt + 1) equations inP(Npt + 1)
unknowns, which in matrix form becomes,

whereG; is a fundamental solution of the adjoint problem,
with a ponctual heat source locatedxdtand activated at
time ¢t which can be written as,

G, =G, (x,x’ -1 "N 6
r=Gr(x,x |t,fF)—WeXp<—E) (r) (5)

Arp 0 0
wherer is the distance between the source point and the A+ F AF+DE+D 0
field point,t = tf —t, d is the space dimension (1, 2 or 3) : : 0
and H (r) denotes the Heaviside function. When sources \A rin,rr  AFiNpf)(F+1) - AFELNpHF+Npf)
are present or the initial temperature field is not harmonic, Vr b
a boundary only formulation is not generally possible. VFi1 bri1
To solve the governing equation (3), a time and space X ) = ) (10)
discretization scheme is needed and the discretised equation : :
is solved by a collocation method. The boundary is divided YF+Npf brinps

into N elements (which are points in 1-D, segments in If the time step is chosen to be a constant then a simplified
2-D and polygonal elements in 3-D) arfdtime steps are  system is obtained,
considered. The unknowns are assumed to be uniform on

every elementp£2; (j = 1,...,N), and constant on each Aoo 0 0 YF
time step {r_1,#7] (f = 1...., F), and equal to the value A10 Aoo 0 YF+1
of the unknown at the center of gravity;, of the element : : .0 :
and at the final timer,, of the considered time step. Finally, Anpro Awpr—no  --- Aoo YF+Npf
we obtain the following set of linear equations, br

bria

F N F N _ . (11)
CiTi,F=ZZHij,Fij,f=22Gij,FfQj,f (6) :

f=1j=1 f=1j=1 brinps
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It should be noted that in this particular, but very common space wherg lies which is generated by the columns\of
case, where the boundary conditions are linear with the If b is the image ofy throughA then the component dj
temperature, the linear system has to be solved only oncealongU; is the component of alongV; multiplied by the
whatever the number of time steps. This results directly ith singular valuew;. SolvingA in these bases is therefore
from the dependency af, in t only. However, the block  straightforward.
triangular form of Eqg. (11) suggests that the discretised For a non-singular squared matrix, the solution of a linear
problem remains parabolic in nature as the solution doesset of equation such as Eq. (9) by using the SVD technique
not depend on the future. Without regularization, Eq. (11) is given by:
is strictly equivalent to the ordinary sequential formulation -1 0
. ) Co - w,

of Eq. (9) since the evolution of the solution is not specified. ., _ [ g o |ub
The regularization procedure will now be applied directly 0 0 w-1
to Eg. (10) or Eqg. (11). The ill-conditioning of matri is w-l "0 0
a consequence of the ill-posedness of this inverse problem. _ 1 '

. . . ) . <—y=V|( 0 ... 0 |JUb (15)
Finally, our method being sequential, the linear system given

: _ _ 0 0 w;?t
by Eqg. (11) is solved step by step in a sequential manner. ] Wi )
However, only the values ofr are stored at timer. wheren is the number of non-zero singular valuesfafin

Convergence in time and space of the method has @ddition the SVD technique provides an explicit bounding

been checked by a systematic comparison with analytical of tr_\e uncerta?nty on the results when the uncertainty_ of
solutions. It has been shown by Lagier [5] that the RMS error the input data is known. These are related by the following

on boundary temperature follows the following equation, ~ inéquality,
RMS Error= AA7 + BAx? (1) 1Y wmaxIADE_ e ) 12D] (16)
Iyl wmin ([0l bl

where A and B are positive constants depending on the
specific problem studiedy? is the time step andx is the
element length, which has been selected to be uniform for
the purpose of the convergence study only. In addition with
Eq. (12) the following recommendation has been issued by
Lagier [5],

whereK (A) is the condition number of the matrix.

In inverse problems, the matri is ill-conditioned, i.e.,
it is singular or close to being singular; some singular values
are very small or equal to zero. As a result, input data noise
is greatly amplified in the corresponding singular or close
to singular directions\(;) of the solution. The advantage
aAt of the SVD regularization is to identify these directions
— =00 (13) . . L :
Ax2 which are prone to corruption. Therefore, it is very simple
This result physically means that the time required for heat {0 Project the solution on the subsp_acglspan.ned by the
to diffuse on a lengthAx should be of the order of the Témaining directions by formally replacing = by Oin (15).
time stepAr. Using this latter criterion, it results that the Therefore, the regularized solution of (11) is reconstructed

two contributions in the error equation (12) have the same fToM its projections by,

magnitude. (V'-y), = wl. (U'-b), ifw>e a7
S : 17

2.2. Regularization procedure: The singular value (V'-y), =0 ifw; <e

decomposition technique (SVD) wheree is the so-called singularity threshold. This hyper-

parameter must be chosen to provide the best compromise
The singular values decomposition technique [3,11] is a between the loss of information due to the partial splitting
general purpose method for solving discrete ill-conditioned of matrix A and the input data noise amplification resulting
problem. It has already been successfully used for solving from the small values of the last singular value considered.
steady inverse heat conduction problems [4,7]. The goal of This is basically the same type of reasoning on which relies
this regularization method is to eliminate the components the “L-curve” methodology [3]. It should be noted that a sen-
of the solution prone to corruption by the input data errors. sitivity analysis ons can be easily realized since only one

Indeed, by definition of the SVD of a matri, we have, SVD of matrix A is needed: changing the value of the hy-
A—U.-W.V! (14) perparameter does not require to restart the calculation from
N scratch.

whereW denotes the diagonal singular value matrix, every  Consider now the non-dimensional problem, Lagier [5]
diagonal elementv; being thei th singular value, greater  proposed simple scaling methods based on the relevant
than or equal to 0, and andV are both orthogonal matrices, scales of the problem. They can be found readily from the
i.e.,U"-U=1andV’-V =1. The geometrical interpretation length of the domain and the initial and boundary conditions
of the SVD is straightforward when two particular bases are of the problem. For example, if the thermal shock on a wall
considered: (i) the base of the space whierbes which is considered, the thickness of the wall is the relevant length
is generated by the columns bf and (ii) the base of the  scale of the problem and the temperature scale depends on
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the initial and boundary conditions. Let us consider on one part of the solution. This is essentially similar to consider-
hand, a thermal shock with a imposed temperatliye pn ing the respective magnitude of the residuals and the penalty
one side of the wall initially at temperatuf®, then the term in the Tikhonov method for example. However, the ad-
temperature scale i5; — Tp. On the other hand if the heat vantage of the SVD algorithm shown here is that is does not
flux, go, is imposed, the temperature scalezdg/k where require to plot explicitly the corresponding L-curve since the
k it the thermal conductivity of the wall material. By using optimal value can be determined analytically.
these scales, non-dimensional temperatures and fluxes are of As a conclusion, our method does not need anyi-
order unity. ori information concerning the solution. Thus using the
If the A matrix is considered, the relation between the SVD regularization needs only the knowledge of the tem-
uncertainty of the solution and that of the data is given perature measurements accuracy and no other information
by Eq. (16). Now if thep largest singular values are only is required. Finally, only two hyperparameters namely the
considered, i.e., the SVD decompositionffis truncated, number of future time step¥ps and the singularity thresh-

then Lagier [5] have proved the following inequality, old ¢, are to be estimated. Besides, unlike the function

IAY]  wmax |AD]| specification method, no bias is introduced by the SVD tech-

vl S w, [0 +1 (18) niqgue and therefore the solution is not overly smoothed when
p

large values ofVys are used by the assumptions on the im-
This equation means that the error on the stabilized solutionposed temperature evolution. This is shown by Lagier [5]
using SVD regularization can be seen as the weighted sumon a variety of analytical solutions. A too large number of
of the uncertainty due to input data noise and the uncertaintyfuture time steps in our method only results in longer com-
resulting from the truncation of the operator by discarding puting times. Therefor&/ps will be chosen according to the

from the solution the subspace spanned¥Wy, i = p + 1, explicit criterion exhibited by Lagier [5] and which has been
...,n}. The parameter thresholding the spectrum of the validated by a sensitivity analysis.

singular values is related o by, The principle of the determination of the minimum
Wy > &> Wyt (19) value of Ny is that the corresponding future time span,

Npt At, equals the required time for a heat shock to diffuse
The parameter is next chosen so that both noise uncertainty significantly on the lengthx separating the location of
and truncation uncertainty have the same weight. This known values from those to be estimated, i.e., the thermal

provides, shock magnitude is several time larger than that of the
measurement uncertainty scaled dy. Lagier [5] showed
| ADb] . :
&= wmaxw (20) that 5 times the temperature uncertainty was large enough

to get results rather insensitive to larger values\gf.
Next, it can be shown thdt being a linear combination of ~ This non-dimensional time span is calculated considering a
temperatures and heat fluxes, the uncertaintp @related  standard heat shock problem on a semi infinite wall with
to that of the non dimensional temperature by, a sudden exposure to a given heat flux on the wall. The
IAb|  |AT*| analytical solution to this problem is given, for example, by
— = (21) Luikov [6]. By expanding this solution for short times, the

bl T following non-dimensional evoluti i
g non-dimensional evolution of the temperature is
Finally, the uncertainty on the temperature can be charac-given
terized by the standard mean deviation of the temperature
measurements;r. This value is an index of quality of the T*(x. 1) ~ i<ﬁ>3exp<—x—2)
measurements which depends only on the hardware charac- "’ JT Aot

teristics. As a result, the optimal value©fs given by, _ . . _ ) .
This function is shown in Fig. 3. Another interesting
or

= Wmax—— (22) consequence of the use of the SVD is to eliminate the need
I for a strictly determined set of equations. For example, it is

Lagier [5] details the exact derivation of Eq. (22) and shows possible to discretize very finely the boundary even though
that for typical thermal shock problemgT || needs to be  few internal temperatures are known. Using a threshold
evaluated at a non-dimensional time value equal to 1. Theon the singular values discards also the singular vectors
time scale is straightforwardly deduced from the other scalesassociated to a null singular value. As a consequence, it
of the problem(r = e2«). is possible to solve for underdetermined set of discretized
It can be noted that the reasoning leading to the optimal equations with no loss of accuracy. This remark also means
value of¢ is analogous to the well known “L-curve” method- that it is no longer necessary to pay any particular attention
ology. The threshold determination emelies exactly onthe  to the number of discrete points on the boundary and to
same idea: choose the hyperparameter value which makedts relation to the number of sensors. The method provides
the uncertainty on the solution resulting from the data un- the best possible estimate of the solution according to
certainty of the same magnitude as the rejected or truncatedhe threshold value. The only important consequence of

(23)
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considering too many boundary points is a non-necessary 5 heat flux Sl eas S5l

) . i . 15 temperature measurements plate

increase in computing time. S el \ =
\ O

3. Application to a two-dimensional case \ i

[m]
. Liquid front
3.1. Experimental set-up s =
To validate our method, an experimental setup named [T
Cinthia, has been designed and built in our laboratory \ S
(Fig. 1). It was originally motivated by the need to cross- Liquid inlet

CheCk the heat flux Sensors. Of. the Corine eXpe”m_ent Fig. 1. Sketch of the Cinthia experiment. The flow of hot fluid comes from

with another heat flux determination method. The Corine below. The instrumented walls are the two facing stainless steel plates. Their

experiment aims at describing the flow and heat transfer of awidth is 35 mm, their height is 150 mm and their length is 300 mm. The

melt spreading on a cold wall in relation to severe accident lower parts and the sides are made of low conductivity material. The overall

studies for nuclear reactors. Depending on the operatingeauipment is wrapped in a 5 cm thick rock wool layer. The plate walls

conditions and considering the physical dimensions of the Iacmg the liquid are equipped with 5 heat flux sensors whereas on the other
o . . . . ace 15 thermocouples are welded on the plate.

Cinthia setup, the heat diffusion problem in the vertical walls

can be considered as one-dimensional or two-dimensional

(Fig. 2).

The physical parameters describing the experiments are
given in Table 1. The criterion for producing a one-dimen-
sional diffusion situation is simply expressed in terms of the
rising velocity of the liquid fronty, which must be much
larger that the diffusion velocity scaleg, i.e.,

v

Themocaugies ] Heat flux sfensors

| Liquid level

>1 (24)

vo

In the other situations, the diffusion is fully 2D. Five heat
flux sensors are located on the inner surface of the stain-
less steel walls to measure the heat flux distribution due to
the rising of the hot water front. These direct measurements
are compared with numerical results obtained by solving
the inverse problem. The data for the inverse problem are
transient temperature measurements given by 15 thermo-
couples welded on the outer surface of the wall. All the
boundaries except the one which is exposed to the heated
fluid were insulated by using a 5 cm-thick layer of rock i
wool insulation around the test section (Kerlane, conductiv- ‘
ity, 0.06 Wm~1.K~1). To be more precise the bottom part of

the metal plates were mounted on a thermalite support, a par-

. . . . 1 -1 Fig. 2. Cinthia experiment. Detailed location of the sensors. The 15 type K
t'CU|E_1r material with a low conductivity (0.3 Wh™=-K™7). thermocouples of 0.5 mm diameter. The hot liquid rises along the cold walls
The influence of the heat losses on the result has not beenyng produces a controlled heating and moving boundary.

studied and it has been simply assumed that the walls were
perfectly insulated4L = 0).

O 0O O O O O O O O O O O 0O o O
—

Table 1

3.2. Numerical results Physical parameters describing the diffusion problem in each wall of the
Cinthia experiment

In order to show the consistency of our algorithm, characteristic length of diffusion 0.025m

the inverse problem is first solved using analytical data. (wall thickness)

A numerical simulation of the heat flux distribution at the Thermal conductivityx 16.3 Wm—1.K-1

wall exposed to the hot liquid has been done. The rising Wall material densityp 7900 kgm—3

speed is assumed to be constant and the rising time isSpecific heate 500 Jkg*l-GK*z1 .

equal to the typical diffusion time through the wall (see Thermaldiffusivity,a =k/pc 413x 107" m"s
Characteristic diffusion timeg = ez/oc 152's

Table 1). In this situation, the diffusion problem is fully two-

) ! RN Associated diffusion speedy = e/1g = 1.65x 1074 ms1
dimensional. The heat flux distribution resembles that of the : fusion speed =e¢/fo = /e -
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0.06 T T T 45 T T T T T T T T
40 -
0.05
35 -

30 | TIS e

25 F
0.03 |

Temperature (Celsius)

0.02 |

Non dimensional temperature, kT/xqy

0.01 |
sl
o ) ) o Ll . . . . .
0 0.05 0.1 0.15 0.2 0 100 200 300 400 500 600 700 800 900
Tourier number, o = atx’ Time (s)
Fig. 3. Non-dimensional temperature rise at a distanad the side of a Fig. 4. Analytical temperatures for the two-dimensional inverse problem.

semi infinite wall exposed suddenly at a constant heat flux. This function The location of the thermocouples are shown in Fig. 2, they are numbered
represents at small times the diffusion of a thermal shock on the boundary of from the bottom to the top and only odd temperature data are shown for the
a solid of finite size where the temperature sensors are located at a distancesake of clarity.

x from the wall end (see Eq. (23)).

T

25 ——r — : : : -

1 " ql estimated
: ql analytical
q2 estimated
q2 analytical
q3 estimated
q3 analytical
q4 estimated
q4 analytical
q5 estimated -+
q5 analytical

experiments (see Figs. 8 and 12) and is only non-zero where
the fluid wets the wall. The heat flux distribution is given by, 20

q(z,t) =qo eXp(—a(vt — Z))H(vt —2) (25) s

where go = 25 kW-m2, v = 3.75x 104 ms™!, 4 =

20 m! and whereH denotes the Heaviside function.
An analytical solution to the direct problem has been
obtained by the method presented by Luikov [6]. As a 5
consequencegxact analytical temperatures (Fig. 4) have .
been used when solving the inverse discretised problem. 0
Furthermore, to mimic a more realistic situation, a Gaussian :
noise (onoise = 0.1°C) has been added to the analytical =S T T o a0 e o mo a0
values of the temperature. The value of the threshold for Time (s)

the SVD regularization given by (22) appliedsat 150 s,

provides a value of* = 0.005. All the calculations have Fig._ 5. Heat_ flux distribution reconstructed from noisy analyti(_:al data,
been done with 300 time steps withr = 3 s (Af* = (noise magnitude, 0C) (Ar =3's,Np = 10,6 =5 x 10-3). The figure .

2 . represents the comparison of the reconstructed heat flux and the analytical
aAt/e”~0.02) and 45 elements on the inner surface and 5y (see Eq. (25)). The number of sensors and their location are shown in
10 elements on the wall width. Fig. 2.

Fig. 5 depicts the reconstructed heat flux values where
the abscissa is the Fourier number which is the ratio of the 4 ' ; ‘ ; ;
physical time to the diffusion time scadg given in Table 1
(Fo=t/1g).

In Fig. 5, the heat flux peaks are clearly smoothed
as already observed by Lagier [5] in simpler 1D cases. ~
Peaks are associated with high frequency components of:
the solution, which are partly eliminated by the SVD
truncation. Part of the high frequencies input due to the
added Gaussian noise are suppressed, whereas some of the
are still present in the calculated distribution as shown by
the significant oscillations in reconstructed heat fluxes. In
connection with these phenomena, it can be observed that
the long-term evolution:{ > 4) of the heat flux conflicts " . ‘ ‘ ‘ . ‘ .
with common sense since it does not vanish identically. The 0 20 40 60 80 100 120 140
space distribution of the heat flux, shown in Fig. 6, helps Distance from the lower end of the plate, z (mm)
understanding this phenomenon. The analytical solution of rig. 6. Space distribution of the heat flux along the wall at long times,
the direct problem is given as an infinite series and the r=780and 840s.

Heat flux (kW/mZ)

/m’

Sleat flux (kW
(=

_l - . -
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SVD regularization seems to truncate the solution to a finite  According to Eq. (22), the truncation thresholdesis=
number of these oscillating components. The spatial average0.005. Lagier [5] has shown it was also possible to find
of these oscillations seems rather small, which is consistentan a priori estimate of the hyperparameter for a variant of
with the overall heat balance. However reducing further the Tikhonov method of order zero already used by Martin
these oscillations does not seem possible since they areand Dulikravitch [8]. This variant may be substituted to our
inherently linked to the truncation of the solution resulting SVD-based procedure on the matrix of Eq. (11). The two
from the unavoidable regularization. Fig. 5 must be borne in hyperparameters of this former method are therefdgge
mind for the analysis of real data since it contains already andu. For non-dimensional problems, it can be shown that
most of the features to be shown on real data reconstructionthe optimum hyperparameter value is,

2
3.3. Experimental results w= (}G—T> (26)
27|

Our algorithm is now applied to two experimental cases The derivation of this equation (see [5, Appendix 10]) fol-
selected from the work of Lagier [5] namely run 16 and |ows the same path than that of Eq. (22). If consists in finding
run 17. The heat flux is reconstructed from the evolution a bound for the uncertainty of he solution of the regularized
of the temperature at the location of the 15 thermocouples. method. This bound is made of two contributions analogous
The control parameters of the two experiments are given to those of Eq. (18). The optimum valueofis based on the
in Table 2. They are the initial wall temperature, the liquid same argument: best compromise between noise amplifica-
temperature and the rise velocity of the front. tion and loss of information. The corresponding value for the

The temperatures measured during run 16 are shown indata of Fig. 7 isu = 6.25 x 10-°. The reconstructed heat
Fig. 7, whereas the heat flux measurements are shown influx is clearly one-dimensional, except for the 5th sensor
Fig. 8. According to Table 2, the rising velocity is high and for the reasons already mentioned. The Tikhonov regular-
the situation is therefore almost 1D. During the experiment, ization shown in Fig. 10 provides results similar to those of
the rise velocity is almost constant, except near the endthe SVD (Fig. 9), the former being slightly better at larger
where the flow rate has been reduced to avoid the watertimes. As already shown with the analytical data, the peaks
to overflow the open box. This is clearly visible from the are smoothed and the reconstruction seems of the same over-
lagging temperature (T15 in Fig. 7) and flux (Flux-hfm- all quality. Agreement with data seems correct at small times
5, in Fig. 8). The temperature measurement uncertainty is but seems to deteriorate at larger times since the heat flux

approximately 0.2C. does not vanish at long times (with respectdp This ini-

tially unexpected trend is also shown by the analytical data
Table 2 and does not therefore result from the data quality.
Control parameters of the two experiments described in Section 3.3 The temperatures measured during Run 17 are shown
Parameter RuN 16 Run 17 in Fig. 11. During this experiment, the rise velocity is of
Initial wall temperatureC] 19 23 the order of. the diffusion velocity and.the sfitu_ation is fully
Water temperature ] 87 95 two-dimensional. The data quality being similar to that of
Temperature difference 68 72 Run 16, the hyperparameters values are unchanged. The heat
Front velocity,v [m-s~1] 10-2 36x10°4 flux peaks are more severely smoothed in comparison to
Non-dimensional front velocityy /v 61 (1D) 2.2 (2D)

the previous quasi-1D case. The SVD reconstructed heat
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Fig. 7. Temperature measurements at odd temperature measurementsig, 8. Heat flux measurements at the 5 locations shown in Fig. 2 during
locations (Cinthia run 16, see Table 1). run 16.
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Fig. 9. Heat flux reconstructed at the flux meters location by the
algorithm (see Fig. 2)Vpt = 10, ¢ = 0.005.
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Fig. 10. Heat flux reconstructed at the flux meters location by the variant
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of Tikhonov regularization of order zero after Martin and Dulikravitch [8].
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Fig. 12. Comparison between the reconstructed heat flux at the flux meters
location by the SVD algorithm and the direct heat flux data (Cinthia run 17,
see Table 2)Npt = 10, = 0.005.
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Fig. 13. Comparison between the measured hat flux and the estimated
heat flux by the variant of the Tikhonov regularization of order zero after
Martin and Dulikravitch [8] (Cinthia run 17, see Table 2y = 10,
w=6.25x 1075,

fluxes (Fig. 12) are not worse than those reconstructed by
the Tikhonov method of order zero (Fig. 13). The long term
trend of the heat flux already discussed with the previous
data is always present and does not conflict with the previous
analysis, however the unexpected low value of the first heat
flux peak remains unexplained. The overall heat balance has
been checked and is nevertheless verified.

Although, this has not been mentioned before, the cri-
terion for the SVD method (Eq. (22)) has been intensively
checked and eventually always calibrated with the resid-
ual principle. Fig. 13 shows the values of the tempera-
ture residual in the middle of the wall during Run 17.
The residuals shown in Fig. 13 are defined as the dif-
ference between the actual temperature values (Fig. 10)
and those reconstructed by solving the direct problem with

Fig. 11. Temperature measurements at odd temperature measuremen® boundary condition based on the calculated heat flux
locations (Cinthia run 17, see Table 2). Two-dimensional situation.

(Fig. 11). It is expected from the theory that the resid-
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ual must not exceed the noise amplitude (@) and does
not show any definite time evolution. Fig. 13 seems to
clearly encompass all these features. Lagier [5] systemati-
cally checked these points for the 1D, 2D and 3D problems
he solved.

4. Application of the methodology to a 3D test-case

The purpose of this section is to show that the presented
methodology can be applied to 3D cases as well with no
modification. The test case to be solved is the following. Let

G.L. Lagier et al. / International Journal of Thermal Sciences 43 (2004) 145-155

analytical solution to this problem which will be used further
as the input data for the inverse problem.

For the inverse problem, it has been assumed that 144
temperatures can be measured on the rear side of the plate.
The plate surface meshing is made of 2212 identical
rectangular elements whereas 4 elements were included in
the thickness of the plate. The total number of elements
is 432. Considering the smallest size of the elements, the
time step is chosen according to Eqg. (13) which provides
At =5s. The number of future time steps is seig =5,
following the same procedure than for the 2D case.

Fig. 15 shows the analytical values of the temperature

us consider the same stainless steal plate already consideregRlculated at various locations on the rear side of the plate.

in the Cinthia experiment. Its thicknessis- 25 mm in thez
direction, its width isL = 300 mm in they direction and its
height is/ = 150 mm in thex direction. Instead of applying

a heat flux with a moving boundary (¢)) on the whole
surface of the plate, let us heat the plate only on a central
strip of width (L < —Lo < y < Lo < L). The problem
being even in the direction it is only necessary to consider
they > O part of the plate. This is accounted for by a method
similar to that of the image method for Laplace equation.
Let us further assume that all the other walls are perfectly

insulated. The heat flux applied on the exposed face of the<

wall is similar to the 2D case (see Eg. (25)) and is now given
by,
q0 eXp(—a(vt — x))H(vt —X)
0<y<Lo
0
Lo<y<L

qx,y,t)= (27)

where the previously mentioned values of the parameters

are, the maximum heat fluyp = 50 kW-m~2, the front rise
velocity isv = 0.5 mms~1 and the spatial decay of the heat
flux is a = 40 mL. In this particular probleny, o = 100 mm

The earlier the temperature rises, the lowerx(idirection)

are located the temperature probes. In the vicinity of the
vertical symmetry plane of the plate = 0), the temperature
rises quite independently of the distance to this plane;

X=31/8, y=5L/8 wwre-e-s
x=31/8, y=TLIg ==w-vr

Isius)
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Fig. 15. Calculated 3D temperature evolutions at selected points of the rear
face of the plate. Analytical calculation to be used as an input for the inverse
problem.

has been chosen, so that two-thirds of the plate are exposed

to the heat flux. Lagier (see [5, Appendix 9]) exhibited an
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Fig. 14. Temperature residue at location T8 (middle of the wall) for the
reconstructed flux by the SVD in Run 17.
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Fig. 16. Comparison between the analytical and the reconstructed heat flux
values by the SVD methoct{ = 0.01, Nt = 5) and the variant of the
Tikhonov method of order 0 utilized by Martin and Dulikravitch [8] close

to the symmetry plane of the plate £ 18.75 mm) at two different levels

(x =1875 mm andv = 68.75 mm).
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